343,604 research outputs found

    Transduplication resulted in the incorporation of two protein-coding sequences into the Turmoil-1 transposable element of C. elegans

    Get PDF
    Transposable elements may acquire unrelated gene fragments into their sequences in a process called transduplication. Transduplication of protein-coding genes is common in plants, but is unknown of in animals. Here, we report that the Turmoil-1 transposable element in C. elegans has incorporated two protein-coding sequences into its inverted terminal repeat (ITR) sequences. The ITRs of Turmoil-1 contain a conserved RNA recognition motif (RRM) that originated from the rsp- 2 gene and a fragment from the protein-coding region of the cpg-3 gene. We further report that an open reading frame specific to C. elegans may have been created as a result of a Turmoil-1 insertion. Mutations at the 5' splice site of this open reading frame may have reactivated the transduplicated RRM moti

    Automated DNA Motif Discovery

    Get PDF
    Ensembl's human non-coding and protein coding genes are used to automatically find DNA pattern motifs. The Backus-Naur form (BNF) grammar for regular expressions (RE) is used by genetic programming to ensure the generated strings are legal. The evolved motif suggests the presence of Thymine followed by one or more Adenines etc. early in transcripts indicate a non-protein coding gene. Keywords: pseudogene, short and microRNAs, non-coding transcripts, systems biology, machine learning, Bioinformatics, motif, regular expression, strongly typed genetic programming, context-free grammar.Comment: 12 pages, 2 figure

    Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR

    Get PDF
    Long non-coding RNAs (lncRNAs) form a new class of RNA molecules implicated in various aspects of protein coding gene expression regulation. To study lncRNAs in cancer, we generated expression profiles for 1707 human lncRNAs in the NCI60 cancer cell line panel using a high-throughput nanowell RT-qPCR platform. We describe how qPCR assays were designed and validated and provide processed and normalized expression data for further analysis. Data quality is demonstrated by matching the lncRNA expression profiles with phenotypic and genomic characteristics of the cancer cell lines. This data set can be integrated with publicly available omics and pharmacological data sets to uncover novel associations between lncRNA expression and mRNA expression, miRNA expression, DNA copy number, protein coding gene mutation status or drug response

    The intron-containing gene for yeast profilin (PFY) encodes a vital function

    Get PDF
    The gene coding for profilin (PFY), an actin-binding protein, occurs as a single copy in the haploid genome of Saccharomyces cerevisiae and is required for spore germination and cell viability. Displacement of one gene copy in a diploid cell by a nonfunctional allele is recessively lethal: tetrad analysis yields only two viable spores per ascus. The PFY gene maps on chromosome XV and is linked to the ADE2 marker. The primary transcript of about 1,000 bases contains an intron of 209 bases and is spliced into a messenger of about 750 bases. The intron was identified by comparison with a cDNA clone, which also revealed the 3' end of the transcript. The 5' end of the mRNA was mapped by primer elongation. The gene is transcribed constitutively and has a coding capacity for a protein of 126 amino acids. The deduced molecular weight o

    The ever-evolving concept of the gene: The use of RNA/Protein experimental techniques to understand genome functions

    Get PDF
    The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as "junk" DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs), which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins) endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years

    Regional perturbation of gene transcription is associated with intrachromosomal rearrangements and gene fusion transcripts in high grade ovarian cancer.

    Get PDF
    Genomic rearrangements are a hallmark of cancer biology and progression, allowing cells to rapidly transform through alterations in regulatory structures, changes in expression patterns, reprogramming of signaling pathways, and creation of novel transcripts via gene fusion events. Though functional gene fusions encoding oncogenic proteins are the most dramatic outcomes of genomic rearrangements, we investigated the relationship between rearrangements evidenced by fusion transcripts and local expression changes in cancer using transcriptome data alone. 9,953 gene fusion predictions from 418 primary serious ovarian cancer tumors were analyzed, identifying depletions of gene fusion breakpoints within coding regions of fused genes as well as an N-terminal enrichment of breakpoints within fused genes. We identified 48 genes with significant fusion-associated upregulation and furthermore demonstrate that significant regional overexpression of intact genes in patient transcriptomes occurs within 1 megabase of 78 novel gene fusions that function as central markers of these regions. We reveal that cancer transcriptomes select for gene fusions that preserve protein and protein domain coding potential. The association of gene fusion transcripts with neighboring gene overexpression supports rearrangements as mechanism through which cancer cells remodel their transcriptomes and identifies a new way to utilize gene fusions as indicators of regional expression changes in diseased cells with only transcriptomic data

    PROTOGENE: turning amino acid alignments into bona fide CDS nucleotide alignments

    Get PDF
    We describe Protogene, a server that can turn a protein multiple sequence alignment into the equivalent alignment of the original gene coding DNA. Protogene relies on a pipeline where every initial protein sequence is BLASTed against RefSeq or NR. The annotation associated with potential matches is used to identify the gene sequence. This gene sequence is then aligned with the query protein using Exonerate in order to extract a coding nucleotide sequence matching the original protein. Protogene can handle protein fragments and will return every CDS coding for a given protein, even if they occur in different genomes. Protogene is available from

    TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates

    Get PDF
    Transposed elements (TEs) are mobile genetic sequences. During the evolution of eukaryotes TEs were inserted into active protein-coding genes, affecting gene structure, expression and splicing patterns, and protein sequences. Genomic insertions of TEs also led to creation and expression of new functional non-coding RNAs such as micro- RNAs. We have constructed the TranspoGene database, which covers TEs located inside proteincoding genes of seven species: human, mouse, chicken, zebrafish, fruit fly, nematode and sea squirt. TEs were classified according to location within the gene: proximal promoter TEs, exonized TEs (insertion within an intron that led to exon creation), exonic TEs (insertion into an existing exon) or intronic TEs. TranspoGene contains information regarding specific type and family of the TEs, genomic and mRNA location, sequence, supporting transcript accession and alignment to the TE consensus sequence. The database also contains host gene specific data: gene name, genomic location, Swiss-Prot and RefSeq accessions, diseases associated with the gene and splicing pattern. In addition, we created microTranspoGene: a database of human, mouse, zebrafish and nematode TEderived microRNAs. The TranspoGene and micro- TranspoGene databases can be used by researchers interested in the effect of TE insertion on the eukaryotic transcriptome
    • …
    corecore